Abstract

The municipal wastewater treatment systems (MWTSs) are the leading enrichment site of antibiotic resistance genes (ARGs), the occurrence of which in sewage and sludge significantly influences the ARGs burden of aerosols. However, the migration behavior and impact factors of ARGs in gas–liquid–solid phase are still unclear. This study collected gas (aerosol), liquid (sewage), and solid (sludge) samples from three MWTSs to explore the cross-media transport behavior of ARGs. The results showed that the main ARGs detected in the solid–gas-liquid phase were consistent, constituting the central antibiotic resistance system of MWTSs. Multidrug resistance genes dominated cross-media transmission (average relative abundance is 42.01 %). Aminocoumarin, fluoroquinolone, and aminoglycoside resistance genes (aerosolization index of 1.260, 1.329, and 1.609, respectively) were prone to migrating from the liquid to gas phase, resulting in long-distance transmission. Environmental factors (mainly temperature and wind speed), water quality index (mainly COD), and heavy metals may be the key factors affecting the trans-media migration of ARGs between the liquid, gas, and solid phase. Based on partial least squares path modeling (PLS-PM), the migration of ARGs in gas phase is primarily influenced by ARGs' aerosolization potential in liquid and solid phase, while heavy metals indirectly influences almost all categories of ARGs. Impact factors aggravated the migration of ARGs in MWTSs through co-selection pressure. This study clarified the key pathways and impact factors that form the cross-media migration behavior of ARGs, which can more specifically control ARGs pollution from different media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.