Abstract

We propose a general, versatile and broad in scope two-steps approach for the elaboration of cross-linked polymer microparticles (µPs) with tunable functionalities and surface properties. Surface-functionalized cross-linked polymer µPs with diameter in the 80 μm range are prepared by the combination of: 1) suspension free radical copolymerization of styrene, propargyl methacrylate and 1,6-hexanediol dimethacrylate, 2) subsequent covalent tethering of a variety of azide-functionalized moieties (i.e. rhodamine B fluorescent dye or poly(ethylene glycol) (PEG) brush precursor) by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) and, 3) optional N-alkylation of the 1,2,3-triazole groups followed by anion exchange reaction to afford covalently-tethered 1,2,3-triazolium ionic liquids with iodide or cresol red counter-anions. The resulting µPs are characterized by laser diffraction, differential scanning calorimetry, as well as by optical, confocal fluorescence, scanning electron and atomic force microscopies. Finally, the rheological properties of concentrated suspensions (volume fractions of 0.40 and 0.44) of the different synthesized µPs dispersed in a 1:1 (vol/vol) mixture of polyalkylene glycol and water are studied. The modification of µPs surface properties contributes not only to change the stability of the suspensions against flocculation, but also to significantly modify their rheological behavior at high shear stresses. This represents a clear experimental evidence of the importance of non-hydrodynamic contact forces in the rheology of non-Brownian suspensions (NBSs).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call