Abstract
In this paper, we propose a cross-layer analytical model for the study of network coding (NC)-based Automatic Repeat reQuest (ARQ) medium access control (MAC) protocols in correlated slow-faded (shadowed) environments, where two end nodes are assisted by a cluster of relays to exchange data packets. The goal of our work is threefold: 1) to provide general physical-layer theoretical expressions for estimating crucial network parameters (i.e., network outage probability and expected size of the active relay set), applicable in two-way communications; 2) to demonstrate how these expressions are incorporated into theoretical models of the upper layers (i.e., MAC); and 3) to study the performance of a recently proposed NC-aided cooperative ARQ (NCCARQ) MAC protocol under correlated shadowing conditions. Extensive Monte Carlo experiments have been carried out to validate the efficiency of the developed analytical model and to investigate the realistic performance of NCCARQ. Our results indicate that the number of active relays is independent of the shadowing correlation in the wireless links and reveal intriguing tradeoffs between throughput and energy efficiency, highlighting the importance of cross-layer approaches for the assessment of cooperative MAC protocols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.