Abstract

In wireless local area networks (WLANs), the traditional carrier sense multiple access with collision avoidance (CSMA/CA) medium access control (MAC) protocol cannot use the full benefits from multiuser multiple-input multiple-output (MU-MIMO) technique due to random medium access of the users. In this paper, we propose a carrier sensing based MAC protocol for a MU-MIMO based WLAN with full utilization of MU-MIMO technique. By modeling the WLAN system under the proposed MAC protocol as a discrete time Markov chain, we develop an analytical model for computing the saturation throughput in presence of path loss, Rayleigh fading and log-normal shadowing. The analytical model is then validated via simulation. By means of numerical and simulation results, we demonstrate that the proposed MAC protocol significantly improves throughput performance than the traditional CSMA/CA MAC protocol. Further, we compare the performance of the proposed MAC protocol with a MU-MIMO MAC protocol called Uni-MUMAC protocol and find that the proposed MAC protocol performs better than the Uni-MUMAC protocol. We also explore the effect of some of the network and wireless channel parameters on the performance of the proposed MAC protocol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call