Abstract

Cognitive Radio (CR) systems are smart systems capable of sensing the surrounding radio environment and adapting their operating parameters in order to efficiently utilize the available radio spectrum. To reach this goal, different transmission parameters across the Open Systems Interconnection (OSI) layers, such as transmit power, modulation scheme, and packet length, should be optimized. This chapter discusses the Adaptive Discrete Particle Swarm Optimization (ADPSO) algorithm as an efficient algorithm for optimizing and adapting CR operating parameters from physical, MAC, and network layers. In addition, the authors present two extensions for the proposed algorithm. The first one is Automatic Repeat reQuest-ADPSO (ARQ-ADPSO) for efficient spectrum utilization. The second one is merging ARQ-ADPSO and Case-Based Reasoning (CBR) algorithms for autonomous link adaptation under dynamic radio environment. The simulation results show improvements in the convergence time, signaling overhead, and spectrum utilization compared to the well-known optimization algorithms such as the Genetic Algorithm (GA).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.