Abstract

We show that computing the crossing number and the odd crossing number of a graph with a given rotation system is NP-complete. As a consequence we can show that many of the well-known crossing number notions are NP-complete even if restricted to cubic graphs (with or without rotation system). In particular, we can show that Tutte’s independent odd crossing number is NP-complete, and we obtain a new and simpler proof of Hliněný’s result that computing the crossing number of a cubic graph is NP-complete. We also consider the special case of multigraphs with rotation systems on a fixed number k of vertices. For k=1 we give an O(mlog m) algorithm, where m is the number of edges, and for loopless multigraphs on 2 vertices we present a linear time 2-approximation algorithm. In both cases there are interesting connections to edit-distance problems on (cyclic) strings. For larger k we show how to approximate the crossing number to within a factor of ${k+4\choose4}/5$ in time O(m k log m) on a graph with m edges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.