Abstract

A 1-planar graph is a graph that can be embedded in the plane with at most one crossing per edge. It is known that testing 1-planarity of a graph is NP-complete.In this paper, we consider maximal 1-planar graphs. A graph G is maximal 1-planar if addition of any edge destroys 1-planarity of G. We first study combinatorial properties of maximal 1-planar embeddings. In particular, we show that in a maximal 1-planar embedding, the graph induced by the non-crossing edges is spanning and biconnected.Using the properties, we show that the problem of testing maximal 1-planarity of a graph G can be solved in linear time, if a rotation system Φ (i.e., the circular ordering of edges for each vertex) is given. We also prove that there is at most one maximal 1-planar embedding ξ of G that is consistent with the given rotation system Φ. Our algorithm also produces such an embedding in linear time, if it exists.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.