Abstract
P-doped and undoped quantum dot (QD) semiconductor optical amplifiers (SOAs) having a similar chip gain of 22-24 dB are compared with regard to their static and dynamic characteristics. Amplified spontaneous emission (ASE) spectra reveal the influence of p-doping on the gain characteristics and the temperature stability. In contrast to QD lasers, p-doping does not significantly increase the thermal stability of QD SOAs. The static four-wave mixing efficiency is larger and more temperature stable in undoped devices, leading to a maximum chip conversion efficiency of -2 dB. Small-signal cross-gain modulation (XGM) experiments show an increase in the small-signal bandwidth from 25 GHz for the p-doped SOAs to 40 GHz for the undoped QD SOAs at the same current density. P-doped QD SOAs also achieve small-signal bandwidths beyond 40 GHz but at a larger bias. The XGM is found to be temperature stable in the range of 20°C to 40°C.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have