Abstract
As part of the Filtration task EM-31, WP-2.3.6, which is a joint effort between Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL), tests were planned to evaluate crossflow filtration in order to the improve the use of existing hardware in the waste treatment plants at both the Department of Energy (DOE) Savannah River Site (SRS) and Hanford Site. These tests included experiments to try different operating conditions and additives, such as filter aids, in order to create a more permeable filter cake and improve the permeate flux. To plan the SRNL tests a literature review was performed to provide information on previous experiments performed by DOE laboratories, and by academia. This report compliments PNNL report (Daniel, et al 2010), and is an attempt to try and capture crossflow filtration work performed in the past that provide a basis for future testing. However, not all sources on crossflow filtration could be reviewed due to the shear volume of information available. In this report various references were examined and a representative group was chosen to present the major factors that affect crossflow filtration. The information summarized in this review contains previous operating conditions studied and their influence on the rate of filtration. Besides operating conditions, other attempted improvements include the use of filter aids, a pre-filtration leaching process, the backpulse system, and various types of filter tubes and filter coatings. The results from past research can be used as a starting point for further experimentation that can result in the improvement in the performance of the crossflow filtration. The literature reviewed in this report indicates how complex the crossflow issues are with the results of some studies appearing to conflict results from other studies. This complexity implies that filtration of mobilized stored waste cannot be explained in a simple generic sense; meaning an empirical model develop from one waste-filter combination will more than likely not be applicable to another combination. It appears that filtration performance varies as wide as the range of the types of slurry wastes that exist. However, conclusions can be elicited from existing information so that filter performance can be better understood, and hopefully improved. Those conclusions and recommendations for the planned tests are listed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.