Abstract

Cross-coupled iterative learning control has previously been applied to contour tracking problems with planar manufacturing robots in which both axes can be characterised as similar systems; having similar dynamics and identical hardware. However, there are many repetitive applications in which dynamically dissimilar systems cooperate to pursue a primary performance objective. This article introduces a novel framework to couple dynamically dissimilar systems while applying iterative learning control, showing the ability to noncausally compensate for a slow system with a fast system. In this framework, performance requirements for a primary objective can more readily be achieved by emphasising an underutilised fast system instead of straining a less-capable slow system. The controller is applied to a micro-robotic deposition manufacturing system to coordinate a slow extrusion system axis and a fast positioning system axis to pursue the primary performance objective, dimensional accuracy of a fabricated part. Experimental results show a 14% improvement in fabrication-dimensional accuracy with only marginal changes in actuator effort, as compared to independently controlled axes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call