Abstract

The control of relaxation-type systems of ordinary differential equations is investigated using the Hamilton–Jacobi–Bellman equation. Firstly, we recast the model as a singularly perturbed dynamics which we embed in a family of controlled systems. Then we study this dynamics together with the value function of the associated optimal control problem. We provide an asymptotic expansion in the relaxation parameter of the value function. We also show that its solution converges toward the solution of a Hamilton–Jacobi–Bellman equation for a reduced control problem. Such systems are motivated by semi-discretisation of kinetic and hyperbolic partial differential equations. Several examples are presented including Jin–Xin relaxation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.