Abstract
Graph data structures are central to many applications such as social networks, citation networks, molecular interactions, and navigation systems. Graph Convolutional Networks (GCNs) are used to process and learn insights from the graph data for tasks such as link prediction, node classification, and learning node embeddings. The compute and memory access characteristics of GCNs differ, both from conventional graph analytics algorithms and from convolutional neural networks, rendering the existing accelerators for graph analytics as well as deep learning, inefficient. In this work, we propose PIM-GCN, a crossbar-based processing-in-memory (PIM) accelerator architecture for GCNs. PIM-GCN incorporates a node-stationary dataflow with support for both Compressed Sparse Row (CSR) and Compressed Sparse Column (CSC) graph data representations. We propose techniques for graph traversal in the compressed sparse domain, feature aggregation, and feature transformation operations in GCNs mapped to in-situ analog compute functions of crossbar memory, and present the trade-offs in performance, energy, and scalability aspects of the PIM-GCN architecture for CSR, and CSC graph data representations. PIM-GCN shows an average speedup of over <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$3-16\times$</tex> and an average energy reduction of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$4-12\times$</tex> compared to the existing accelerator architectures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.