Abstract
Virtually all commercial instruments for the measurement of the oscillator PM noise make use of the cross-spectrum method (arXiv:1004.5539 [physics.ins-det], 2010). High sensitivity is achieved by correlation and averaging on two equal channels, which measure the same input, and reject the background of the instrument. We show that a systematic error is always present if the thermal energy of the input power splitter is not accounted for. Such error can result in noise underestimation up to a few decibels in the lowest-noise quartz oscillators, and in an invalid measurement in the case of cryogenic oscillators. As another alarming fact, the presence of metamaterial components in the oscillator results in unpredictable behavior and large errors, even in well controlled experimental conditions. We observed a spread of 40 dB in the phase noise spectra of an oscillator, just replacing the output filter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.