Abstract
Cross-shaped excimer (self-trapped exciton) luminescence from α- and β-perylene single crystals of 50–100 μm was found when they were excited at the center of the crystals with a continuous-wave (cw) laser resonant with the exciton absorption. The cross shape is formed by the two lines which intersect at the excited position and are perpendicular to the sides of the crystals of parallelogram shape. Luminescence is emitted from the excited spot and 4 side edges in the cross shape. The most striking feature is that the luminescence intensity at the edges was as high as or higher than at the excited spot. The possibility of the exciton propagation or the waveguide effect is rejected both experimentally and theoretically. This phenomenon can be reasonably explained only when the radiative transition probability of excimers is significantly enhanced at the crystals side edges than at the center due to the lower symmetry.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have