Abstract
Purpose This study aims to investigate the cross-sectional reshaping in transitioning/starting rectangular jets of aspect ratio 2 under various inlet perturbation conditions at the Reynolds number of Re = UDh/v = 17,750. Design/methodology/approach Large eddy simulation results compared with the phase-locked particle image velocimetry data exhibit the cross-sectional jet deformations from rectangular to rounder shapes. Inflow velocity oscillations are introduced at the fundamental frequency associated with the Kelvin–Helmholtz instability characterized by the spectral analysis of the hotwire data and the linear stability predictions. Findings The initially rectangular cross-section of the jet reshapes into the rounder geometries with increased downstream distance while the edges of the jet become distorted due to the shear layer instability more significantly observed near the high curvature corners. The different expansion rates in the longer and shorter edges of the jet and the consequent cross-sectional reshaping are found to be sensitive to small levels of random inlet perturbations. In addition, introducing controlled sinusoidal oscillations results in the formation of more organized trailing shear layer where the stronger vortex rings go through the curvature-induced deformations. Originality/value Spatio-temporal study of vortex dynamics in transitioning rectangular jets reveals important information about the effect of the controlled jet forcing on local entrainment. Dynamics of the leading vortex dominates the entrainment in transitioning jets which are commonly used in practical applications. Near-field entrainment is also promoted proportional to the amplitude of the controlled inlet oscillations within the trailing vortex rings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Numerical Methods for Heat & Fluid Flow
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.