Abstract
Nanoindentation and nanoscratch have become well-established techniques for measuring mechanical properties of thin films. Conventionally, these tests are performed on the surface of the films to evaluate their mechanical integrity: elastic modulus, hardness and adhesion strength. However, in complex systems such as compositionally graded thin films, small spatial variations in mechanical properties are difficult to distinguish using this approach. In this work, the evaluation of the above parameters was conducted on cross-sections of compositionally graded mullite coatings, chemical-vapor deposited on silicon carbide substrates. To assess the intrinsic mechanical properties and their spatial variation, nanoindentation tests were carried out on mullite coatings with constant and graded Al/Si ratios. Additionally, transverse nanoscratch tests to evaluate the cohesive and adhesive resistance of the coatings as well as the coating/substrate systems, respectively, were performed. Different damage morphologies were identified within the coating and at the interface by using complementary characterization techniques. In the case of functionally graded coatings a gradual rise in the hardness and elastic modulus with increasing distance from the coating/substrate interface was observed. Nanoscratch tests on the cross-sections allowed determining the critical loads for cohesive and adhesive damage by following this approach. Compositionally graded mullite coatings exhibited the best combination of hardness/stiffness and cohesive/adhesive scratch strength.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have