Abstract
Composite materials for energy storage such as powders, electrodes or battery stacks often require probing their bulk chemical/morphological properties, which remains challenging so far with conventional analytical methods. In this work, Ar+ milling cross-section is proposed to reveal the intrinsically buried bulk information of three different composites without physical/chemical change. Then, nano-Auger/scanning electron microscopy (SEM) analysis is proposed to investigate their bulk properties at both micro- and nano-scales. For MnCo-based powders with micrometric particles, it allowed revealing the bulk porosity and the bulk nano- or micro- Mn/Co distribution. For micrometer thick TiSnSb-based electrodes, it allowed proving the conversion reaction over long term cycling (i.e. the participation of the electrochemically inactive Ti) while revealing the TiSnSb particles morphological evolution (shell to core spreading/pulverization into porous structure) and SEI formation inside the porous TiSnSb. For PEO-based solid battery stacks, the cross-section allowed revealing well-defined interfaces so that reliable interfaces analysis can thus be perform. Advantage/limitation of this cross-section nano-Auger/SEM approach are also discussed. Overall, this work opens the door for future development of Ar+ milling cross-section and Auger analysis as powerful tools to reveal/study buried chemical/morphological properties at micro- and nano-scales even beyond the energy storage field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.