Abstract
On-demand delivery has become prevailing for people to order meals and groceries online, especially during the pandemic. It is essential to dispatch massive orders to limited couriers to satisfy on-demand delivery users, especially during peak hours. Existing studies mainly focus on order dispatching within a region, and they are challenging to be applied to the cross-region courier displacement problem due to (i) unique practical factors, including regional spatial-temporal demand-supply dynamics and strict delivery time constraints, and (ii) the large-scale setting and high-dimensional decision space given massive couriers in on-demand delivery. To address these challenges, in this work, we propose an efficient cross-region courier displacement framework, i.e., Courier Displacement Reinforcement Learning (short for CDRL) based on centralized multi-agent actor-critic, which first design the actor-critic network with a time-varying displacement intensity control module to capture demand-supply dynamics and utilize the centralized training and decentralized execution multi-agent framework to address the large-scale coordination. One-month real-world order records collected from one of the biggest on-demand delivery services in the world are utilized to show the performance of our design. The extensive results show that our method offers a 47.97% of increase in balancing supply and demand and reduces idle ride time by 24.62% simultaneously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.