Abstract
Many geometric structures associated to surface groups can be encoded in terms of invariant cross ratios on their circle at infinity; examples include points of Teichmüller space, Hitchin representations and geodesic currents. We add to this picture by studying cocompact cubulations of arbitrary Gromov hyperbolic groups G. Under weak assumptions, we show that the space of cubulations of G naturally injects into the space of G-invariant cross ratios on the Gromov boundary partial _{infty }G. A consequence of our results is that essential, hyperplane-essential, cocompact cubulations of hyperbolic groups are length-spectrum rigid, i.e. they are fully determined by their length function. This is the optimal length-spectrum rigidity result for cubulations of hyperbolic groups, as we demonstrate with some examples. In the hyperbolic setting, this constitutes a strong improvement on our previous work [4]. Along the way, we describe the relationship between the Roller boundary of a mathrm{CAT(0)} cube complex, its Gromov boundary and—in the non-hyperbolic case—the contracting boundary of Charney and Sultan. All our results hold for cube complexes with variable edge lengths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.