Abstract

Abstract Cross polarisation/magic angle spinning 13C NMR spectroscopy has been used to study structural changes in cellulose induced by the dissolving pulp process. The cellulose structure in several dissolving pulps was investigated for commercial and laboratory cooked Eucalyptus 92α and 96α. The average lateral dimension, or average thickness, of the cellulose fibril aggregates is related to the amount of surface area exposed and could be one controlling factor for the chemical reactivity of commercial dissolving pulps during modification reactions. The thickness of the cellulose fibril aggregates governs the amount of surface area present in the fibre wall, and cellulose surface material constitutes the part of the cellulose that is directly accessible to reagents. In all sample series investigated, the raw pulp was found to be less aggregated than the corresponding bleached final pulp. Furthermore, an irreversible increase in fibril aggregate width was observed on free drying for both laboratory cooked and commercial pulps. Upon rewetting with water, the freely dried 96α pulp was found to be more aggregated than the freely dried 92α pulp, although sugar analysis showed very similar carbohydrate compositions. As indicated by the molecular mass distribution, the commercial 92α pulp contained larger amounts of degraded cellulose; this may be a plausible explanation for the different behaviour of the 92α and 96α pulps during free drying.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.