Abstract

The distinguished properties of hexagonal boron nitride (h-BN), specifically its atomically smooth surface, large critical electric field, and large electronic bandgap, make it ideal for thin film microelectronics and as an ultrawide bandgap semiconductor. Owing to weak van der Waals interactions between layers, h-BN exhibits a significant degree of anisotropic thermal conductivity. The in-plane thermal conductivity of h-BN has extensively been studied, yet the only measured data of cross-plane thermal conductivity (k⊥) are for exfoliated h-BN films. Exfoliation from bulk crystals is not a sustainable method for scalable production of h-BN due to its low repeatability, low yield, poor control of sample thickness, and limitation to small areas. Thus, it is necessary to investigate the thickness-dependence of k⊥ for thin films grown by a practical growth method, such as pulsed laser deposition (PLD), which enables the production of reliable and large-area h-BN films with a control of film thickness. We grew h-BN using PLD at 750 °C and observed a decreasing trend of k⊥ as thickness increases from 30 to 300 nm, varying from ∼1.5 to ∼0.2 W/(m K). We observed a relatively high k⊥ value for h-BN at a thickness of 30 nm, providing insight into the k⊥ of PLD-grown films suitable for electronics applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.