Abstract
Deep learning techniques have been successfully applied to automatically segment and quantify cell-types in images acquired from both confocal and light sheet fluorescence microscopy. However, the training of deep learning networks requires a massive amount of manually-labeled training data, which is a very time-consuming operation. In this paper, we demonstrate an adversarial adaptation method to transfer deep network knowledge for microscopy segmentation from one imaging modality (e.g., confocal) to a new imaging modality (e.g., light sheet) for which no or very limited labeled training data is available. Promising segmentation results show that the proposed transfer learning approach is an effective way to rapidly develop segmentation solutions for new imaging methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bioinformatics and Biomedical Engineering : 7th International Work-Conference, IWBBIO 2019, Granada, Spain, May 8-10, 2019, Proceedings, Parts I and II. IWBBIO (Conference) (7th : 2019 : Granada, Spain)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.