Abstract
Haptic roughness is basic to accurately identifying the texture of an object. When we manipulate everyday objects, their surfaces emit sound. Cross-modal effects between haptic and auditory roughness must thus be considered in realizing a multimodal human-computer interface. We conducted two experiments to accumulate basic data for the cross-modality using a force feedback device. In one experiment, we studied the cross-modal effect of auditory roughness on haptic roughness. We studied the effect of haptic roughness on auditory roughness in the other experiment. Results showed that cross-modal effects were mutually enhancing when their single-modal roughness was relatively high.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have