Abstract
A human can infer the magnitude of interaction force solely based on visual information because of prior knowledge in human–robot interaction (HRI). A method of reconstructing tactile information through cross-modal signal processing is proposed in this paper. In our method, visual information is added as an auxiliary source to tactile information. In this case, the receiver is only able to determine the tactile interaction force from the visual information provided. In our method, we first process groups of pictures (GOPs) and treat them as the input. Secondly, we use the low-rank foreground-based attention mechanism (LAM) to detect regions of interest (ROIs). Finally, we propose a linear regression convolutional neural network (LRCNN) to infer contact force in video frames. The experimental results show that our cross-modal reconstruction is indeed feasible. Furthermore, compared to other work, our method is able to reduce the complexity of the network and improve the material identification accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.