Abstract

We investigated the characteristic features of perception in octopuses by examining multisensory information from an object simulating prey, which provided different visual and tactile stimuli. In experiments, we presented plain-body octopus with four kinds of models, namely, the Lifelike crab, the Embedded crab, the Translucent crab, and the Black cuboid. These models contain different amounts of visual and tactile information that a crab originally contains: the Lifelike crab resembles a crab both visually and tactilely, the Embedded crab resembles a crab visually but provides different tactile information, the Translucent crab provides tactile information of a crab but contains less visual information, and the Black cuboid lacks both visual and tactile information of a crab. Among these four models, octopuses contacted most with the Lifelike crab, which was similar to their behavior with a crab. Indeed, octopuses were fastest to contact the Lifelike crab and had the longest duration of contacting it among the four models. Octopuses contacted the Embedded crab more than the Translucent crab, both of which had contrasting visuo-tactile information compared to that of a crab. Quickness of octopuses to contact and duration of contact with the Embedded crab were more similar to those with the Lifelike crab than to those with the Translucent crab. Furthermore, octopuses contacted the Black cuboid least among the models. These results suggest that octopuses compositely detect both visual and tactile information in order to perceive an object. Furthermore, octopuses possess the potential priority either for visual or tactile information, by which they process the target object.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call