Abstract

Polyethylene wear and associated osteolysis can limit the longevity of total hip replacement. In recent years, many improvements have been made in the consolidation, manufacture, and sterilization of polyethylene acetabular components. These improvements provided reduced polyethylene wear and prolonged usefulness of total hip replacement. Recent advances in extensively cross-linking polyethylene offer the possibility to substantially further reduce wear in total hip replacement. Hip simulator wear testing demonstrates an order of magnitude reduction in wear resulting from cross-linking GUR 1050 polyethylene by exposure to 100 kGy of electron beam radiation followed by annealing to encourage cross-linking and to reduce residual free radicals. Clinical investigation will be required to validate the wear advantage of these materials in vivo. (Hip International 2002; 2: 103-7).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.