Abstract
This paper investigates optimal routing and adaptive scheduling in a wireless mesh network composed of mesh clients and mesh routers. The mesh clients are power constrained mobile nodes with relatively little knowledge of the overall network topology. The mesh routers are stationary wireless nodes with higher transmission rates and more capabilities. We develop a notion of instantaneous capacity regions, and construct algorithms for multi-hop routing and transmission scheduling that achieve network stability and fairness with respect to these regions. The algorithms are shown to operate under arbitrary client mobility models (including non-ergodic models with non-repeatable events), and provide analytical delay guarantees that are independent of the timescales of the mobility process. Our control strategies apply techniques of backpressure, shortest path routing, and Lyapunov optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.