Abstract

Designing biochemical systems that can be effectively used in diverse fields, including diagnostics, molecular computing and nanomachines, has long been recognized as an important goal of molecular programming and DNA nanotechnology. A key issue in the development of such practical devices on the nanoscale lies in the development of biochemical components with information-processing capacity. In this article, we propose a molecular device that utilizes DNA strand displacement networks and allows interactive inhibition between two input signals; thus, it is termed a cross-inhibitor. More specifically, the device supplies each input signal with a processor such that the processing of one input signal will interdict the signal of the other. Biochemical experiments are conducted to analyze the interdiction performance with regard to effectiveness, stability and controllability. To illustrate its feasibility, a biochemical framework grounded in this mechanism is presented to determine the winner of a tic-tac-toe game. Our results highlight the potential for DNA strand displacement cascades to act as signal controllers and event triggers to endow molecular systems with the capability of controlling and detecting events and signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.