Abstract

The recognition rate of SIFT algorithm in single hand vein database has been as high as 99.5%. But with the development of Internet-plus technology, the demand for distributed systems becomes more and more significant. However, the problem of picture quality caused by cross-device makes the intraclass variations larger. For example, when gathering the dorsal hand vein images, subtle changes in relative distance and orientation among the imaging camera, the illumination LED arrays and the different location of users’ hand, as well as shielding by the external housing box from ambient light sources and so on, these will make large difference to one person’s hand images. So, including the contrast, the lightness, the shifting, the angle of rotation, the size and so on, these differences make it possible to use some traditional methods to recognize dorsal hand vein with a low recognition rate of less than 50%. Therefore, based on the traditional SIFT, this paper optimized the scale factor [Formula: see text], extreme searching neighborhood structure and matching threshold [Formula: see text]. It can be seen that the cross-device hand vein feature is more robust, and the recognition rate reached an average of 88.5%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.