Abstract

Two-color spin-noise spectroscopy of interacting electron spins in singly charged semiconductor quantum dots provides information on the interquantum dot interactions. We investigate the spin cross-correlation function in a quantum dot ensemble employing a modified semiclassical approach. Spin-correlation functions are calculated using a Hamilton quaternion approach that maintains local quantum mechanical properties of the spins. This method takes into account the effects of the nuclear-electric quadrupolar interactions, the randomness of the coupling constants, and the variation of the electron $g$ factor on the spin-noise power spectra. We demonstrate that the quantum dot ensemble can be mapped on an effective two-quantum dot problem and discuss how the characteristic length scale of the interdot interaction modifies the low-frequency cross-correlation spectrum. We argue that details on the interaction strength distribution can be extracted from the cross-correlation spectrum when applying a longitudinal or a transversal external magnetic field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call