Abstract
The correlate of protection in human immunodeficiency virus (HIV) infection is not known, but preclinical and clinical studies support the involvement of both antibodies and cellular immunity. In addition, the existence of multiple HIV clades makes HIV vaccine design especially challenging. We have constructed a vaccine platform with an HIV-1 subtype B DNA immunogen expressing full length consensus sequences from HIV-1 rev, nef, tat, and gag with additional cellular epitope clusters from the env and pol regions. Furthermore, this platform has been extended to three additional plasmids expressing the same immunogens but originating from subtypes A or C consensus or FGH ancestral sequences. Immunogenicity in BALB/c mice, by gene gun or intramuscular delivery, revealed strong IFN-gamma production in response to in vitro re-stimulation with a H-2d restricted gag peptide (AMQMLKETI) or even stronger toward an env epitope (RGPGRAFVTI). Weak humoral immunity was detected. Gene gun immunization with a cocktail of all four plasmids induced pre-challenge cellular immunity in C57Bl6/A2.01 mice and subsequently a robust frequency of protection (11/12 animals) after experimental challenge with subtype A or B HIV-1/Murine Leukemia Virus (HIV-1/MuLV). The cross-clade protection observed in this challenge experiment demonstrates that these multigene/multiepitope HIV DNA immunogens are likely to be potent immunogens also against the HIV-infection of human beings.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have