Abstract
We are concerned with retrieving a query person from multiple videos captured by a non-overlapping camera network. Existing methods often rely on purely visual matching or consider temporal constraints but ignore the spatial information of the camera network. To address this issue, we propose a pedestrian retrieval framework based on cross-camera trajectory generation that integrates both temporal and spatial information. To obtain pedestrian trajectories, we propose a novel cross-camera spatio-temporal model that integrates pedestrians' walking habits and the path layout between cameras to form a joint probability distribution. Such a cross-camera spatio-temporal model can be specified using sparsely sampled pedestrian data. Based on the spatio-temporal model, cross-camera trajectories can be extracted by the conditional random field model and further optimised by restricted non-negative matrix factorization. Finally, a trajectory re-ranking technique is proposed to improve the pedestrian retrieval results. To verify the effectiveness of our method, we construct the first cross-camera pedestrian trajectory dataset, the Person Trajectory Dataset, in real surveillance scenarios. Extensive experiments verify the effectiveness and robustness of the proposed method.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have