Abstract
Alternative grazing systems that incorporate cover crops may be useful to achieve a longer grazing season and maximize forage production. However, little is known about their impact on soil properties, especially in the presence or absence of cattle grazing in the early spring. The aim of this study was to evaluate the interacting effects of cropping systems with and without cattle grazing in rotation with corn or soybean on the balance and dynamics of soil fertility and enzyme activity. This study was conducted as a system experiment between 2015 and 2019 in Minnesota and Pennsylvania, USA. The experimental design was a randomized complete block design with four replications. Treatments included presence or absence of cattle grazing and two types of cropping systems (pasture-rye-soybean-pasture [P-R-SB-P] and pasture-wheat/vetch-corn-pasture [P-W/V-C-P]. Soil samples were collected six times during the study. Soil properties analyzed were soil pH, organic matter, salinity, K, Ca, Mg, cation exchange capacity (CEC), P, β-glucosidase, alkaline phosphatase, aryl-sulfatase, fluorescein diacetate hydrolysis, ammonium, nitrate, permanganate oxidizable carbon (POXC), N%, C%, S%, and C:N ratio. Grazing increased glucosidase activity, available Ca, Mg, NO3−, NH4+, soil pH, soil C%, S%, and the C:N ratio. In the P-W/V-C-P cropping system, soil pH, available Ca, NO3−, and sulfatase activity were found to increase compared with the P-R-SB-P cropping system. In contrast, soil OM, available K, Mg, CEC, glucosidase, phosphatase, POXC, and total C%, N%, and S% were greater in the P-R-SB-P cropping system compared with the P-W/V-C-P cropping system. The results of this study suggested that rotational grazing can increase soil quality and microbial decomposition under the P-W/V-C-P cropping system, and that this result was greater than under the P-R-SB-P cropping system, leading to a faster nutrient cycling. These results show promise for producers who are seeking methods to diversify their farming operation and reduce the need for external inputs.
Highlights
Enhancing soil ecosystem services, including regulating, supplying, and supporting services, is a high priority for the development of sustainable agricultural systems [1,2]
The results of this study suggested that rotational grazing can increase soil quality and microbial decomposition under the P-W/V-C-P cropping system, and that this result was greater than under the P-R-SB-P cropping system, leading to a faster nutrient cycling
Soil pH, OM, K, Ca, Mg, cation exchange capacity (CEC), glucosidase activity, phosphatase activity, sulfatase activity, Permanganate oxidizable carbon (POXC), N%, C%, and S% were significantly affected by the main effect of cropping systems (Table 3)
Summary
Enhancing soil ecosystem services, including regulating, supplying, and supporting services, is a high priority for the development of sustainable agricultural systems [1,2]. Organic agricultural systems primarily rely on ecological principles to maintain soil ecosystem services including biodiversity and Agronomy 2020, 10, 803; doi:10.3390/agronomy10060803 www.mdpi.com/journal/agronomy. Some forms of CO2 sequestration include the use of agricultural practices such as conservation tillage, cover crops, crop rotation, and fertilization [10,11]. Together those practices could optimize biomass growth, minimize reliance of fossil fuel-based fertilizer, and increase the amount of carbon being returned to soil ecosystems
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have