Abstract

Cropland monitoring is important for ensuring food security in the context of global climate change and population growth. Freely available satellite data allow for the monitoring of large areas, while cloud-processing platforms enable a wide user community to apply remote sensing techniques. Remote sensing-based estimates of cropped area and crop types can thus assist sustainable land management in developing countries such as Ethiopia. In this study, we developed a method for cropland and crop type classification based on Sentinel-1 and Sentinel-2 time-series data using Google Earth Engine. Field data on 18 different crop types from three study areas in Ethiopia were available as reference for the years 2021 and 2022. First, a land use/land cover classification was performed to identify cropland areas. We then evaluated different input parameters derived from Sentinel-2 and Sentinel-1, and combinations thereof, for crop type classification. We assessed the accuracy and robustness of 33 supervised random forest models for classifying crop types for three study areas and two years. Our results showed that classification accuracies were highest when Sentinel-2 spectral bands were included. The addition of Sentinel-1 parameters only slightly improved the accuracy compared to Sentinel-2 parameters alone. The variant including S2 bands, EVI2, and NDRe2 from Sentinel-2 and VV, VH, and Diff from Sentinel-1 was finally applied for crop type classification. Investigation results of class-specific accuracies reinforced the importance of sufficient reference sample availability. The developed methods and classification results can assist regional experts in Ethiopia to support agricultural monitoring and land management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call