Abstract
Using remote sensing and UAVs in smart farming is gaining momentum worldwide. The main objectives are crop and weed detection, biomass evaluation and yield prediction. Evaluating machine learning methods for remote sensing based yield prediction requires availability of yield mapping devices, which are still not very common among farmers. In this study Convolutional Neural Networks (CNNs) – a deep learning methodology showing outstanding performance in image classification tasks – are applied to build a model for crop yield prediction based on NDVI and RGB data acquired from UAVs. The effect of various aspects of the CNN such as selection of the training algorithm, depth of the network, regularization strategy, and tuning of the hyperparameters on the prediction efficiency are tested. Using the Adadelta training algorithm, L2 regularization with early stopping and a CNN with 6 convolutional layers, mean absolute error (MAE) in yield prediction of 484.3 kg/ha and mean absolute percentage error (MAPE) of 8.8% was achieved for data acquired during the early period of the growth season (i.e., in June of 2017, growth phase <25%) with RGB data. When using data acquired later in July and August of 2017 (growth phase >25%), MAE of 624.3 kg/ha (MAPE: 12.6%) was obtained. Significantly, the CNN architecture performed better with RGB data than the NDVI data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.