Abstract

A basic parametric crop water use model (WATER) that employes climatic and environmental data to calculate temporal and spatial water consumption for a variety of major corps was applied specifically for grain corn to the region of China and Korea to investigate the evapotranspiration (ET) demand on grain corn and the associated irrigation water applications necessary for optimal crop production. A network of 241 stations provided the seasonal climatic input. The climatic input consisted of data averaged over approximately a 20 year period. Among the results, highest ET under full irrigation (first harvest) occurred in the northwestern inland sections of China, whereas least ET was found for the southeast. Under rainfed conditions, the relationship became nearly inverse. In order to achieve optimum crop yields, about 1000 mm of irrigation water was needed in the northwest, contrasted with none required in the south and east of China. A sensitivity analysis was applied to determine the degree of error introduced by faulty or uncertain environmental input data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call