Abstract

Conservation agriculture with three management principles has been widely adopted to alleviate the current global agricultural soils facing threats such as soil erosion and nutrient loss. However, unclear understanding of rational crop rotation and the lack of global quantitative assessment limit our deeper insight into soil nutrient cycling under conservation agriculture. Considering the important role of soil extracellular enzyme activities (EEAs) on soil nutrient cycling, a meta-analysis with 3238 observations was conducted on the effects of no tillage (NT) and legumes incorporation into rotation system (LRS) on soil EEAs. NT significantly increased the activities of C-acquiring, N-acquiring, P-acquiring, and oxidative enzymes by 18.3%, 17.4%, 7.1%, and 14.0%, respectively, while LRS significantly increased only P-acquiring enzymes. The combination of NT and legume cultivation had no significant effect on EEAs. In contrast, crop diversity had a positive effect on the NT-induced increase in EEAs. In addition, the extent of NT-induced changes varied depending on other factors. Through further analysis, we clarified the important factors affecting NT-induced changes in EEAs, such as climatic conditions, soil properties, and agronomic practices at the experimental sites. Overall, our findings provide insights into the understanding of the mechanisms of conservation agriculture impacts on the soil nutrient cycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.