Abstract
Crohn's disease (CD) is a chronic inflammatory bowel disease with significant morbidity, affecting millions worldwide. The intricacies of immune responses in CD, especially post-treatment, remain a vital area of exploration. While memory T (Tm)-cell subsets play a pivotal role in adaptive immunity, their specific function in patients with CD after treatment is not well-understood. This study aims to investigate the effect and function of Tm-cell subsets in these patients, addressing a crucial knowledge gap in the context of CD therapeutics. A total of eight patients diagnosed with CD were selected based on predefined inclusion criteria. All patients were treated with either anti-inflammatory agents, immunosuppressive drugs, or a combination of both. For comparison, healthy donors were enrolled based on exclusion of autoimmune or inflammatory diseases. Peripheral blood mononuclear cells (PBMCs) and lymphocytes were isolated from blood and lymph node tissue respectively. The phenotype and cytokine production of T lymphocytes from both CD patients and healthy donors were analyzed using flow cytometry. Statistical comparisons of the outcomes between CD patients and healthy donors were made using Mann-Whitney test (two-tailed) and Student t-test. Post-treatment CD patients exhibited an altered T cell distribution with a notable increase in CD8+ T cells in PBMCs (P=0.0005), and altered frequencies of CD4+ and CD8+ T cells in mesenteric lymph nodes (MLNs). Tm cells showed decreased interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) production, with significant alterations in the frequency of IFN-γ-producing CD8+ stem cell-like Tm (Tscm) cells in lesions of the MLNs from patients with CD (CD-M-Lys) compared to healthy MLNs from patients with CD (N-M-Lys) (P=0.0152). Differences in tissue-resident Tm (Trm)-cell subset frequencies were observed between the MLNs and small intestinal mucosa in CD patients. The treatments with anti-inflammatory agents and/or immunosuppressive drugs have a significant effect on the frequency and function of Tm-cell subsets. Clinically, these findings suggest a potential therapeutic avenue in modulating Tm-cell responses, which might be particularly beneficial for conditions where immune response modulation is crucial. Further clinical studies are warranted to explore the full therapeutic implications of these findings.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have