Abstract
This paper proposes a cross-layer based cognitive radio multichannel medium access control (MAC) protocol with TDMA, which integrate the spectrum sensing at physical (PHY) layer and the packet scheduling at MAC layer, for the ad hoc wireless networks. The IEEE 802.11 standard allows for the use of multiple channels available at the PHY layer, but its MAC protocol is designed only for a single channel. A single channel MAC protocol does not work well in a multichannel environment, because of the multichannel hidden terminal problem. Our proposed protocol enables secondary users (SUs) to utilize multiple channels by switching channels dynamically, thus increasing network throughput. In our proposed protocol, each SU is equipped with only one spectrum agile transceiver, but solves the multichannel hidden terminal problem using temporal synchronization. The proposed cognitive radio MAC (CR-MAC) protocol allows SUs to identify and use the unused frequency spectrum in a way that constrains the level of interference to the primary users (PUs). Our scheme improves network throughput significantly, especially when the network is highly congested. The simulation results show that our proposed CR-MAC protocol successfully exploits multiple channels and significantly improves network performance by using the licensed spectrum band opportunistically and protects PUs from interference, even in hidden terminal situations.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have