Abstract
The vitamin A metabolite, all-trans retinoic acid (atRA), plays an essential role in vertebrate embryogenesis, including development of the nervous system. In the human neuroblastoma cell line, SH-SY5Y, atRA rapidly induces (within 4 hr) the expression of the Crk-associated substrate (Cas) family member, neural precursor cell-expressed, developmentally down-regulated gene 9 (NEDD9) also called the human enhancer of filamentation (HEF1). NEDD9 is expressed in the developing hindbrain (5-somite stage) in the presumptive rhombomeres 2, 3, and 5 before the onset of overt segmentation. Exposure of rat embryos to excess atRA at times ranging from E9.25 to E12 leads to altered NEDD9 expression in the developing hindbrain within 6 hr. NEDD9 expression is also perturbed in vitamin A-deficient embryos. A putative retinoic acid response element in the 5' region of the NEDD9 promoter binds specifically to a RXR/RAR heterodimer and forms a higher molecular weight complex upon addition of a retinoic acid receptor-specific antibody. Regulation of NEDD9 may be an important means whereby atRA promotes cell spreading and neurite outgrowth in SH-SY5Y human neuroblastoma cells, and NEDD9 represents a new downstream target of atRA and its receptors in the developing hindbrain.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have