Abstract
Through using the methods of finite-size effect and short time dynamic scaling, we study the critical behavior of parasitic disease spreading process in a diffusive population mediated by a static vector environment. Through comprehensive analysis of parasitic disease spreading we find that this model presents a dynamical phase transition from disease-free state to endemic state with a finite population density. We determine the critical population density, above which the system reaches an epidemic spreading stationary state. We also perform a scaling analysis to determine the order parameter and critical relaxation exponents. The results show that the model does not belong to the usual directed percolation universality class and is compatible with the class of directed percolation with diffusive and conserved fields.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have