Abstract

Temperature estimation of interacting quantum many-body systems is both a challenging task and topic of interest in quantum metrology, given that critical behavior at phase transitions can boost the metrological sensitivity. Here we study noninvasive quantum thermometry of a finite, two-dimensional Ising spin lattice based on measuring the dephasing dynamics of a spin probe coupled to the lattice. We demonstrate a strong critical enhancement of the achievable precision in terms of the quantum Fisher information, which depends on the coupling range and the interrogation time. Our numerical simulations are compared to instructive analytic results for the critical scaling of the sensitivity in the Curie-Weiss model of a fully connected lattice and to the mean-field description in the thermodynamic limit, both of which fail to describe the critical spin fluctuations on the lattice the spin probe is sensitive to. Phase metrology could thus help to investigate the critical behavior of finite many-body systems beyond the validity of mean-field models. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.