Abstract

Resistive random access memory (RRAM) is an important technology for both data storage and neuromorphic computation, where the dynamics of nanoscale conductive filaments lies at the core of the technology. Here, we analyze the current noise of various silicon-based memristors that involves the creation of a percolation path at the intermediate phase of filament growth. Remarkably, we find that these atomic switching events follow scale-free avalanche dynamics with exponents satisfying the criteria for criticality. We further prove that the switching dynamics are universal and show little dependence on device sizes or material features. Utilizing criticality in memristors, we simulate the functionality of hair cells in auditory sensory systems by observing the frequency selectivity of input stimuli with tunable characteristic frequency. We further demonstrate a single-memristor-based sensing primitive for representation of input stimuli that exceeds the theoretical limits dictated by the Nyquist-Shannon theorem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.