Abstract

Aqueous rechargeable Zn-ion batteries (ARZIBs) are promising for energy storage. However, the Zn dendrite and corrosive reactions on the surface of Zn anode limit the practical uses of ARZIBs. Herein, we present a valid electrolyte additive of NaI, in which I- can modulate the morphology of Zn crystal growth by adsorbing on specific crystal surfaces (002), and guide Zn deposition by inducing a negative charge on the Zn anode. Simultaneously, it enhances the reduction stability of water molecules by participating in the solvation structure of Zn(H2O)62+ by forming ZnI(H2O)5+. At 10 mA cm−2, the assembled Zn symmetrical batteries can run stably over 1,100 h, and the depth of discharge (DOD) can reach 51.3 %. At 1 A g−1, the VO2||Zn full-cell in 2 M ZnCl2 electrolyte with 0.4 M NaI (2 M ZnCl2-0.4 M NaI) maintains of the capacity retention of 75.7 % over 300 cycles. This work offers an insight into inorganic anions as electrolyte additives for achieving stable zinc anodes of ARZIBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call