Abstract

The Euler–Poisson equations describe important physical phenomena in many applications such as semiconductor modeling and plasma physics. This paper is to advance our understanding of critical threshold phenomena in such systems in the presence of different forces. We identify critical thresholds in two damped Euler–Poisson systems, with and without alignment, both with attractive potential and spatially variable background state. For both systems, we give respective bounds for subcritical and supercritical regions in the space of initial configuration, thereby proving the existence of a critical threshold for each scenario. Key tools include comparison with auxiliary systems and the phase space analysis of the transformed system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.