Abstract
Thermal buckling of antisymmetric cross-ply hybrid laminates is investigated. A one-dimensional finite element based on first-order shear deformation theory, having two nodes and six degrees of freedom per node, namely axial displacement, transverse displacements and rotation of the normal to the beam axis and their derivatives with respect to beam coordinate axis, is employed for this purpose. Various types of hybrid laminates with different combination of glass/epoxy, Kevlar/epoxy and carbon/epoxy are considered. Effects of slenderness ratio, boundary conditions and lay-ups are studied in detail.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have