Abstract

Lead-free electronic packages intended for use in applications such as aerospace, military, and other highly demanding service conditions, necessitate exceptional mechanical reliability of lead-free electronic solder joints under realistic service conditions. Most current design strategies employed for improving the reliability of lead-free electronic solder joints are aimed at developing suitable alloying additions and reinforcements to the solder itself. At present there exists no suitable methodology to minimize the effects of service conditions while the solder joint is in service. Since thermomechanical fatigue reliability of electronic solder joints is closely related to the crack nucleation that occurs during very early stages of repeated thermal excursions, this study is based on subjecting solder joints to a limited number of thermal shock (TS) cycles in a chosen temperature regime to nucleate cracks, then evaluating their effectiveness in improving reliability when the solder joints are subjected to additional TS cycles in a different temperature regime. This study is a preliminary investigation, aimed at developing suitable methodology to minimize the effects of damage to lead-free solder joint specimens subjected to repeated thermal excursions during service, by imposing appropriate thermal treatments. These thermal treatments can be automatically implemented at programmed intervals during the service life of the electronic packages. Methods employed in these studies may also be useful to enhance long-term service reliability and to obtain a conservative estimate of long-term service reliability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.