Abstract

AbstractThe season‐dependent impacts of the tropical North Atlantic (TNA) sea surface temperature anomaly (SSTA) on subsequent El Niño‐Southern Oscillation (ENSO) evolution were investigated through observational and modeling studies. The results indicate that, although the maximum amplitude of the TNA SSTA occurs during boreal spring, the TNA SSTA in boreal summer generates a stronger rainfall response in situ, which can further induce a significantly stronger zonal wind anomaly over the equatorial western Pacific via Kelvin and Rossby wave processes. The cause of a stronger precipitation response in boreal summer is attributed to the northward migration of the climatological Atlantic warm pool and the Inter‐Tropical Convergence Zone. Idealized Coupled General Circulation Model experiments further demonstrate that a persisting TNA SSTA forcing up to boreal summer is critical in conveying the TNA impact to subsequent ENSO evolutions in the Pacific.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call