Abstract

Ricin toxin (RT) is a natural plant-derived protein toxin from the seed of castor beans that belongs to a family of type II ribosome-inactivating proteins (RIPs). In addition to its main toxic mechanism of inhibiting the synthesis of cellular proteins, RT can induce the production of inflammatory cytokines and cause inflammatory injury. Macrophages play a crucial role in innate immunity and the adaptive immune response as the first line of host defense against bacterial infections and various types of invading pathogens. Upon activation, macrophages release types of cytokines to remove pathogens. However, the effect of RT on the immune response and its mechanism are not well characterized. In the current study, we investigated the activation of the TLR4-mediated signaling pathway by low-dose RT treatment and its interaction with signaling molecules in the transduction pathway. We found that low-dose RT can activate MyD88- and TRIF-dependent signaling pathways, revealing a possible mechanism by which low-dose RT-activates TLR4-mediated signaling pathways. We also confirmed that the TLR4-induced activation of the inflammatory signaling pathways was produced via its binding to RT. This study may help to identify the most important target molecules and clarify the mechanism of inflammatory injury of ricin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call