Abstract

Although macrophages play a central role in the pathogenesis of septic shock, NK1(+) cells have also been implicated. NK1(+) cells comprise two major populations, namely NK cells and V alpha 14(+)NKT cells. To assess the relative contributions of these NK1(+) cells to LPS-induced shock, we compared the susceptibility to LPS-induced shock of beta(2)-microglobulin (beta(2)m)(-/-) mice that are devoid of V alpha 14(+)NKT cells, but not NK cells, with that of wild-type (WT) mice. The results show that beta(2)m(-/-) mice were more susceptible to LPS-induced shock than WT mice. Serum levels of IFN-gamma following LPS challenge were significantly higher in beta(2)m(-/-) mice, and endogenous IFN-gamma neutralization or in vivo depletion of NK1(+) cells rescued beta(2)m(-/-) mice from lethal effects of LPS. Intracellular cytokine staining revealed that NK cells were major IFN-gamma producers. The J alpha 281(-/-) mice that are exclusively devoid of V alpha 14(+)NKT cells were slightly more susceptible to LPS-induced shock than heterozygous littermates. Hence, LPS-induced shock can be induced in the absence of V alpha 14(+)NKT cells and IFN-gamma from NK cells is involved in this mechanism. In WT mice, hierarchic contribution of different cell populations appears likely.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call